A Study on Masquerade Detection

نویسنده

  • Lin Huang
چکیده

ACKNOWLEDGMENTS I am indebted to my advisor, Dr. Mark Stamp, for his consistent guidance, support, and encouragement throughout my master program. Dr. Mark Stamp has tirelessly guided me on how to perform meaningful research at every step. He has been and will always be an excellent role model for me. They have made my life in San Jose enjoyable and memorable. I am especially grateful to my dear wife Xiuduan Fang for her everlasting love, encouragement and support. iv ABSTRACT In modern computer systems, usernames and passwords have been by far the most common forms of authentication. A security system relying only on password protection is defenseless when the passwords of legitimate users are compromised. A masquerader can impersonate a legitimate user by using a compromised password. An intrusion detection system (IDS) can provide an additional level of protection for a security system by inspecting user behavior. In terms of detection techniques, there are two types of IDSs: signature-based detection and anomaly-based detection. An anomaly-based intrusion detection technique consists of two steps: 1) creating a normal behavior model for legitimate users during the training process, 2) analyzing user behavior against the model during the detection process. In this project, we concentrate on masquerade detection, a specific type of anomaly-based IDS. We have first explored suitable techniques to build a normal behavior model for masquerade detection. After studying two existing modeling techniques, N-gram frequency and hidden Markov models (HMMs), we have developed a novel approach based on profile hidden Markov models (PHMMs). Then we have analyzed these three approaches using the classical Schonlau data set. To find the best detection results, we have also conducted sensitivity analysis on the modeling parameters. However, we have found that our proposed PHMMs do not outperform the corresponding HMMs. We conjectured that Schonlau data set lacked the position information required by the PHMMs. To verify this conjecture, we have also generated several data sets with position information. Our experimental results show that when there is no sufficient training data, the PHMMs yield considerably better detection results than the v corresponding HMMs since the generated position information is significantly helpful for the PHMMs. Alert/Alarm: A signal suggesting that a system has been or is being attacked [1]. True Positive: A legitimate attack which triggers IDS to produce an alarm [1]. False Positive: An event signaling IDS to produce an alarm when no attack has been taken …

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combining Baiting and User Search Profiling Techniques for Masquerade Detection

Masquerade attacks are characterized by an adversary stealing a legitimate user’s credentials and using them to impersonate the victim and perform malicious activities, such as stealing information. Prior work on masquerade attack detection has focused on profiling legitimate user behavior and detecting abnormal behavior indicative of a masquerade attack. Like any anomaly-detection based techni...

متن کامل

Efficient Masquerade Detection Using SVM Based on Common Command Frequency in Sliding Windows

Masqueraders who impersonate other users pose serious threat to computer security. Unfortunately, firewalls or misuse-based intrusion detection systems are generally ineffective in detecting masqueraders. Anomaly detection techniques have been proposed as a complementary approach to overcome such limitations. However, they are not accurate enough in detection, and the rate of false alarm is too...

متن کامل

Decoy Document Deployment for Effective Masquerade Attack Detection

Masquerade attacks pose a grave security problem that is a consequence of identity theft. Detecting masqueraders is very hard. Prior work has focused on profiling legitimate user behavior and detecting deviations from that normal behavior that could potentially signal an ongoing masquerade attack. Such approaches suffer from high false positive rates. Other work investigated the use of trap-bas...

متن کامل

Episode Based Masquerade Detection

Masquerade detection is one of major concerns of system security research due to two main reasons. Such an attack cannot be detected at the time of access and any detection technique relies on user’s signature and even a legitimate user is likely to deviate from its usual usage pattern. In the recent years, there have been several proposals to efficiently detect masquerader while keeping the fa...

متن کامل

Towards Building a Masquerade Detection Method Based on User File System Navigation

Given that information is an extremely valuable asset, it is vital to timely detect whether one’s computer (session) is being illegally seized by a masquerader. Masquerade detection has been actively studied for more than a decade, especially after the seminal work of Schonlau’s group, who suggested that, to profile a user, one should model the history of the commands she would enter into a UNI...

متن کامل

Towards Effective Masquerade Attack Detection

Towards Effective Masquerade Attack Detection

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010